A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro.
نویسندگان
چکیده
Natural rubber (cis-1,4-polyisoprene) is an isoprenoid compound produced exclusively in plants by the action of rubber transferase. Despite a keen interest in revealing the mechanisms of rubber chain elongation and chain length determination, the molecular nature of rubber transferase has not yet been identified. A recent report has revealed that a 24 kDa protein tightly associated with the small rubber particles of Hevea brasiliensis, therefore designated small rubber particle protein (SRPP), plays a positive role in rubber biosynthesis. Since guayule (Parthenium argentatum Gray) produces natural rubber similar in size to H. brasiliensis, it is of critical interest to investigate whether guayule contains a similar protein to the SRPP. A cDNA clone has been isolated in guayule that shares a sequence homology with the SRPP, thus designated guayule homologue of SRPP (GHS), and the catalytic function of the protein was characterized. Sequence analysis revealed that the GHS is highly homologous in several conserved regions to the SRPP (50% identity). In vitro functional analysis of the recombinant protein overexpressed in E. coli revealed that the GHS plays a positive role in isopentenyl diphosphate incorporation into high molecular weight rubbers as SRPP does. These results indicate that guayule and Hevea rubber trees contain a protein that is similar in its amino acid sequence and plays a role in isopentenyl diphosphate incorporation in vitro, implying that it contributes to the enhancement of rubber biosynthetic activity in rubber trees.
منابع مشابه
Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray.
Natural rubber is produced by a rubber transferase (a cis-prenyltransferase). Rubber transferase uses allylic pyrophosphate to initiate the rubber molecule and isopentenyl pyrophosphate (IPP) to form the polymer. Rubber biosynthesis also requires a divalent metal cation. Understanding how molecular weight is regulated is important because high molecular weight is required for high quality rubbe...
متن کاملBiochemical regulation of rubber biosynthesis in guayule (Parthenium argentatum Gray)
Natural rubber is an irreplaceable raw material vital to industry, transportation, medicine and defense. It is largely produced from clonal plantations of Hevea brasiliensis in southeastern Asia. Temperate-zone rubber-producing crops are greatly desired to increase biodiversity, protect supplies, and provide a safe natural-rubber alternative for the large numbers of people suffering from Type I...
متن کاملEffect of 2-(3,4-Dichlorophenoxy)-triethylamine on the Synthensis of cis-Polyisoprene in Guayule Plants (Parthenium argentatum Gray).
The application of 2-(3,4-dichlorophenoxy)-triethylamine to guayule (Parthenium argentatum Gray var 593) plants results in a 2-fold stimulation of rubber synthesis and a 1.5- to 3-fold increase in mevalonic acid kinase, isopentenyl pyrophosphate isomerase, and rubber transferase. The increase in these enzymic activities accounts in part for the chemical induction of rubber synthesis.
متن کاملIdentification of natural rubber and characterization of rubber biosynthetic activity in fig tree.
Natural rubber was extracted from the fig tree (Ficus carica) cultivated in Korea as part of a survey of rubber producing plants. Fourier transform infrared and (13)C nuclear magnetic resonance analysis of samples prepared by successive extraction with acetone and benzene confirmed that the benzene-soluble residues are natural rubber, cis-1,4-polyisoprene. The rubber content in the latex of fig...
متن کاملImpairment of Photorespiratory Carbon Flow into Rubber by the Inhibition of the Glycolate Pathway in Guayule (Parthenium argentatum Gray).
Cut shoots of guayule (Parthenium argentatum Gray) were treated with four inhibitors of the glycolate pathway (alpha-hydroxypyridinemethanesulfonic acid; isonicotinic acid hydrazide, glycine hydroxamate, and amino-oxyacetate, AOA) in order to evaluate the role of photorespiratory intermediates in providing precursors for the biosynthesis of rubber. Photorespiratory CO(2) evolution in guayule le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 55 396 شماره
صفحات -
تاریخ انتشار 2004